import os import statistics import imageio from PIL import Image, ImageFilter, ImageMath import numpy as np import SimpleITK as sitk STUDY_PATH = "/media/nfs/SRS/storage/0/CT Without Contrast-Brain_55121720" STUDY_PATH = '/media/nfs/SRS/storage/0/MRI With_Without Contrast--Brain_54141890' MODEL_PATH = '/home/xfr/nni/model-5-64/TwNuKtj7/best_zdoyO.pth' # Write image series using SimpleITK def flush_file(shape, fileNames): if len(fileNames) > 1: xy = min(shape) outfile = '%s.nii.gz' % os.path.basename(fileNames[0]).split('.')[0] img = sitk.ReadImage(fileNames) img.SetSpacing([1.0,1.0, 1.0*xy/len(fileNames)]) sitk.WriteImage(img, outfile) COR_ABS_THRESHOLD = 0.5 COR_REL_THRESHOLD = 0.8 def lower_bound(cors): THRESHOLD = 3 if len(cors) < 2: return 0 return min(statistics.mean(cors) - statistics.stdev(cors) * THRESHOLD, min(cors[:-1])) def lower_bound2(cors): THRESHOLD = 1.5 if len(cors) < 1: return 0 Q1 = np.percentile(cors, 25, interpolation = 'lower') Q3 = np.percentile(cors, 25, interpolation = 'higher') IQR = Q3 - Q1 return min(Q1 - THRESHOLD * IQR, min(cors[:-1])) def main(): old_shape = None old_array = None old_cor = COR_ABS_THRESHOLD fileNames = [] cors = [] for jpg_file in sorted(os.listdir(STUDY_PATH)): jpg_path = os.path.join(STUDY_PATH, jpg_file) array = np.asarray(Image.open(jpg_path).convert('L')) shape = array.shape # LB = lower_bound(cors) if not fileNames: cor = COR_ABS_THRESHOLD else: if old_shape != shape: cor =0 else: # cor = correlate (old_array, array) cor = np.corrcoef(old_array.flat, array.flat)[0,1] cors.append(cor) # if cor < COR_ABS_THRESHOLD or cor < old_cor * COR_REL_THRESHOLD: LB = lower_bound(cors) if cor < COR_ABS_THRESHOLD or cor < LB: flush_file(old_shape, fileNames) fileNames = [jpg_path] cors = [] mark = '**********' else: fileNames.append(jpg_path) mark = len(fileNames) print('%s %.4f %.4f %s' %(jpg_file,cor, LB, mark)) old_array = array old_shape = shape old_cor = cor flush_file(old_shape, fileNames) if __name__ == '__main__': main()